skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Geneva, Anthony_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The genomic characteristics of adaptively radiated groups could contribute to their high species number and ecological disparity, by increasing their evolutionary potential. Here, we explored the genomic variation of Anolis lizards, focusing on three species with distinct phenotypes: A. auratus, one of the species with the longest tail; A. frenatus, one of the largest species; and A. carolinensis, one of the species that inhabits the coldest environments. We assembled and annotated two new chromosome-level reference genomes for A. auratus and A. frenatus, and compared them with the available genomes of A. carolinensis and A. sagrei. We evaluated the presence of structural rearrangements, quantified the density of repeat elements, and identified potential signatures of positive selection in coding and regulatory regions. We detected substantial rearrangements in scaffolds 1, 2 and 3 of A. frenatus different from the other species, in which the rearrangement breakpoints corresponded to hotspots of developmental genes. Further, we detected an accumulation of repeats around key developmental genes in anoles and phrynosomatid outgroups. Finally, coding sequences and regulatory regions of genes relevant to development and physiology showed variation that could be associated with the unique phenotypes of the analyzed species. Our results show examples of the hierarchical genomic variation within anoles, that could provide the substrate that promoted phenotypic disparity and contributed to their adaptive radiation. 
    more » « less
  2. Abstract Color and pattern are often critical to survival and fitness, but we know little about their genetic architecture and heritability in groups like reptiles. We investigated the genetic architecture for the pattern of the dewlap—an extensible throat fan important for communication—in anole lizards. We studied the Hispaniolan bark anole (Anolis distichus)—a species that exhibits impressive intraspecific dewlap polymorphism across its range—by conducting multigenerational experimental crosses with 2 populations, one with a solid pale yellow dewlap and another with an orange dewlap surrounded by a yellow margin. Upon rejecting the hypothesis that the extent of the orange pattern is a quantitative trait resulting from many loci of minor effect, we used a maximum likelihood model-fitting framework to show that it is better explained as a simple Mendelian trait, with the solid yellow morph being dominant over the blush orange. The relatively simple genetic architecture underlying this important trait helps explain the complex distribution of dewlap color variation across the range of A. distichus and suggests that changes in dewlap color and pattern may evolve rapidly in response to natural selection. 
    more » « less